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of Germany 
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Abstmci The invene problem in the framework of the algebraic scattering theow (AST) 
is concerned with the derivation of potentials from an algebraic Hamiltonian mnnected 
with an algebraically determined S-matrix. We investigate the inverse problem for two 
kinds of dynamical symmetries, based on the groups SO(1,3)  and 50(2,3), which 
have been p r o p e d  for an algebraic description of heay ion scattering. Two different 
inversion schema are presented yielding potentials for the S0(1,3)- and the SO(& 3)- 
problem. In the case of the SO(2 ,  3)-symmetry a potential results which depends on 
the momentum operator and, therefore, can be interpreted as a non-local interaction. 

1. Introduction 

The algebraic scattering theory (AST), which was developed in the last decade by 
Alhassid, Iachello, Wu and others [l-91, provides an algebraic technique to deter- 
mine the S-matrix for a given symmetry of the Hamiltonian of the scattering system. 
The AST has the advantage over the traditional scattering theory that the calculations 
involved are analytic and easy to cany out and that they result in a closed form for 
the S-matrix. Moreover, the algebraic treatment of coupled channel problems can be 
done without great numerical effort [lo, 111. 

Instead of a potential V ( T ) ,  which has to be known in the traditional treatment 
of scattering problems, the only information about the system in the algebraic the- 
ory is that its Hamiltonian has a dynamical symmetry. This is the case whenever 
the Hamiltonian H can be written as a function h of the Casimir invariants C of 
a group G : H = h(C)  (71. For one-dimensional scattering the groups SO(2,l) 
and SO(2,Z) have been considered [4,5,12] and for three-dimensional scattering the 
groups SO(1,3), S0(2,3)  and SU(1,3) [&lo]. The determination of the S-matrix 
is completely algebraic without reference to a coordinate realization of the operators 
of the scattering group G. In the following we shall therefore distinguish the abstract 
Hamiltonian H = h( C) and the algebraically derived S-matrix from their counter- 
parts in traditional scattering theory by refering to them as algebraic Hamiltonian 
and algebraic S-matrix, respectively. 

In the original formulation of the AST [l-91 it seemed to be possible to determine 
the algebraic S-matrix uniquely up to phase factors, which do not show up in the 
cross section. However, this result had to be reconsidered when we found that a 
coordinate realization of the algebraic Hamiltonian with an 50(2,3) group structure 
led to a potential V(T) whose S-matrix was not in agreement with the published 
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S0(2 ,3 )  S-matrix [14,15]. In a subsequent re-examination of the AST [16] we 
showed that the original formulation of the AST is not the most general one. It has 
to be slightly modified in order to be in amrdance with the potential V ( T )  derived 
in [14,15]. The basic result of the re-examination is that in the algebraic theory two 
classes of S-matrices always have to be considered. 

Up to now all explicit coordinate realizations of an algebraic Hamiltonian with 
a given dynamical symmetry have led to potentials reproducing only one of the two 
possible classes of S-matrices. This point is especially important in the case of the 
scattering groups SO(1,3) and SO(2,3), which are candidates for the description 
of modified Coulomb scattering [&lo]. 

The general algebraic S-matrix with SO(2,3) symmetry has the form [8,16] 

Here, 1 denotes the angular momentum, and the parameters v and f > 0 are 
connected with the potential strength and the energy, respectively [8]. The phase 
factors eiX*' and eio*(k,V) cannot be fixed by means of group theory alone. 

The S-matrices Sk constitute one class of matrices with the same pole structure, 
S i  the other one. The reason for the occurrence of two distinct classes is explained 
in detail in [16]. The Coulomb S-matrix 

can be obtained as a special case of Sk: the constant f has to be chosen to be the 
Sommerfeld parameter q, f = q = ( Z , Z z e z ) / k  ( R  = m = 1). and v to be equal to 

[8,9]. The sign convention in the definition of q is such that a positive q corresponds 
to repulsive Coulomb scattering. The potential derived from (1) in [14,15], however, 
has an S-matrix which belongs to the class S i .  To our knowledge no publication 
exists where coordinate-dependent potentials with a Coulomb tail or with an S-matrix 
belonging to the class Sk are derived from the algebraic SO(2,3) Hamiltonian. 

On the other hand it has been known for a long time that the group SO(1,3) 
is the exact symmetry group for non-relativistic Coulomb scattering (cf e.g. [ l q ) .  
Therefore, Coulomb scattering should be described by an AST with SO( 1,3) dynam- 
ical symmetry. The general S-matrix with SO(1,3) symmetly is given by [6,8,16] 

From this formula one sees that the Coulomb S-matrix (2) is in the class St.  
The problem of the investigations presented in this paper is the derivation of 

potentials whose S-matrices belong to the class SFin the case of scattering with 
S0(2,3) dynamical symmetry. The question is considered of whether these po- 
tentials have a long-range Coulomb tail plus short-range deviations from the pure 
Coulomb potential. Only if such potentials exist would the S0(2,3)-AST be a mean- 
ingful theory for an algebraic treatment of heavy ion scattering. Furthermore, we are 
interested to know if in the framework of the SO(1,3)-ASTpotentiak can be found 
with S-matrices belonging to the class S; of (3). 

To this end an inverse problem in the framework of the AST has to be solved for 
each symmetry. Starting from the algebraic S-matrix one obtains an expression for 
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the algebraic Hamiltonian for which a coordinate realization has to be found such 
that one arrives at the usual Schrodinger equation. Then the potential can be read 
off directly. 

Section 2 gives a short survey of some relevant results of the AST with SO( 1,3)  
and S 0 ( 2 , 3 )  dynamical symmetry. In section 3 we show by means of two different 
inversion schemes that for the S0(1,3)-AST not only can the expected Coulomb 
potential be derived, but also a potential whose S-matrix belongs to the class S; 
of (3). Moreover, we give a solution for the SO(1,3)  inverse problem of modified 
Coulomb scattering. Section 4 deals with the inverse problem in the framework of 
the SO(2,3)-MT. We prove that the Coulomb potential appears as a special solution 
and point out some important consequences for the algebraic treatment of heavy ion 
scattering. 

2. Short survey of the m with S0(1,3) and SO(Z,3) dynamical symmetry 

21. The scattering group S0(1,3) 
The algebra of the group SO(1,3)  consists of six generators, L; and Kj (i , j  E 
1,2,3),  satisfying the following commutation relations: 

[K i , lC j ]  = -ieijkLk [ L ; ,  Lj] = ic i jkLk [ L i , K j ]  = ieijkICk. (4) 

L = ( L , ,  L,, L , )  is the angular momentum operator. The relations (4) imply that 
the three operators L j  form an SO(3)  subgroup of rotations and that the other 
three operators (K,, K2,  IC3) = K behave like a vector under rotations. 

A Casimir invariant of the group SO(1,3) is given by 

(5) CSo(’73) = LZ - K2.  

The general algebraic S-matrix with SO( 1,3) symmetry, given in (3), has one free 
parameter f. This parameter labels the eigenvalues of the Casimir invariant in the 
continuous series representations of SO(1,3) ,  which are used for the algebraic de- 
scription of the scattering states [8,6,18]. One gets 

(6) cso(1.3) + 1 = -p 
when Cso(1,3) is acting on the scattering states. 

In the S 0 ( 1 , 3 ) - ~ s T  the following ansatz is made for the algebraic Hamiltonian 

If = h(-(CS0(”3) f 1)). (7) 

Since the Hamiltonian acting on scattering states can be substituted by the scattering 
energy, a relationship exists between the labelling parameter f and the scattering 
energy E [SI: 

h(f2) = E .  (8) 

In order to obtain the Coulomb S-matrix one has IO set 
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in Sf given in (3). q denotes the real Sommerfeld parameter. 
We remark that unless otherwise noted we consider only repulsive Coulomb scat- 

tering where q > 0. For attractive Coulomb scattering one has to set f = -q in s;, 
since the parameter f is positive by convention. 

Equations (7)-(9) allow the determination of the algebraic Hamiltonian which 
should describe Coulomb scattering in the SO(1,3) theory. A solution is given by [8] 

A Zielke and W Scheid 

There are many other possible solutions of (7)-(9) which have not been mentioned 
in literature, e.g. 

The Hamiltonian (10) is the only solution which does not depend explicitly on 
the energy. 

It is important to note that there are four choices for f which all lead to the 
same algebraic Hamiltonian (IO): one can set f = q (if q > 0) or f = 171 in 
Sfas  well as f = -7 (if q < 0) or f = 1111 in s,. 

For the description of modified Coulomb scattering the parameter f is split into 
a part f, = q describing pure Coulomb scattering and a part f, allowing for a 
short-range strong interaction plus absorption: 

f = f , t f , .  
Alhassid et al [10,11,9] showed that the qualitative features of heavy ion reaction 
cross sections can be reproduced in good quality if one chooses an 1- and k-dependent 
parametrization of WoodsSaxon type for f,: 

The imaginaly part of f, describes absorption, 1, has thc meaning of a 'grazing' 
angular momentum and A is a measure of diffuseness. 

For the collision of I6O + 24Mg at E,, = 27.8 MeV a realistic calculation based 
on a generalization of the S0(1,3)-theory to four coupled channels has been carried 
out by Alhassid and Iachello [ll]. 

2.2. The scattering group S0(2,3) 
The algebra of the group 5 0 ( 2 , 3 )  consists of ten generators, A,, B;, L ,  and V, 
where L = ( L l ,  L,,L,) is the angular momentum operator, A = (A,,A,,A,) and 
B = (B,, B,, B,) are vectors under rotations while V is a scalar. The commutation 
relations hetween A, B and V are 

[A,,&] = -i6ijV 
(13) 

[Ai,Aj] = [B,,B,] = -icijkLk I 

[ A i , V ] = - i B i  [ B ; , V ] = i A i .  

A Casimir invariant of the group 5 0 ( 2 , 3 )  is given by 

(14) c S W X  = ~2 t v2 - A Z  - ~ 2 ,  
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The algebraic procedure yields the S-matrix given in (1) which now has two free 
parameters, f and U [6,8,16]. Again, the parameter f labels the continuous series 
representations of the Casimir invariant [6,8] and 

(15) ~ ~ 2 ~ 3 )  + 2 - - f ~  , 
4 -  

The parameter v allows the variation of the potential strength as can be versed in 
any appropriate coordinate realization of the algebraic theory. 

The following ansatz for the algebraic Hamiltonian is made: 

H = h(- (cs0(2 ,3)  + 2)) 4 (16) 

and (8) has to be fulfilled again. The Coulomb S-matrix appears as a special case of 
the general S0(2,3) S-matrix S: for the following values of the parameters in S:: 

f = q  v = 1  and x+ = O  @+ = 2f In2 (17) 

where the theorem r ( z ) r ( z  + i) = 21-2” lr1/2 r(2z) for the Gamma-functions has 
to be used. 

As before, one obtains for the algebraic Hamiltonian 

or equivalently 

It has the same form for one of the four choices, f = q (if 7 > 0) or f = 171 in 
S; as well as f = -q (if 1) < 0) or f = 1171 in Si. 

The algebraic description of modified Coulomb scattering makes use of the fact 
I that the SO(2,3) S-matrix (1) has one additional parameter v compared to the 

SO(1,3) S-matrix (3). Now the potential strength parameter v allows for short- 
range deviations from pure Coulomb scattering. The parameter f remains tixed while 
v is taken to be different from 1 and parametrized as a function of E and k [8,9]: 

A fit of the four parameters vR,  U,, A, and E, in the S-matrix (1) to experi- 
mentally measured cross sections for the scattering of IhO on 28Si gave good results, 
comparable to those of optical model fits [6,9]. 

3. Solutions of the S0(1,3) inverse problem 

In the AST the algebraic S-matrix is determined without knowledge of the potentials, 
which are needed for the calculation of the S-matrix in traditional scattering theory. 
In order to obtain the potentials belonging to a particular S-matrix one can follow 
two routes The first one is to use one of the mostly numerical inversion methods of 
the inverse scattering theory [19,20,13]. The other one, to be followed here, starts 
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from the algebraic Hamiltonian with SO( 1,3) symmetry, which assumes a particular 
form once the free parameters of the S-matrix are k e d  (cf (10) and (11)). The idea 
of the inversion method in the context of the AST is to search for a realization of the 
group-theoretical Hamiltonian in suitable coordinates such that one obtains the usual 
form of the Schrddinger equation. 

Among many possible realizations of the S0(1,3) generators we consider the 
following one which is particularly suitable for our purpose: 

A Zielke and W Scheid 

Here and in the following the realization coordinates R and P are conjugate to 
each other: [ R i , P j ]  = isi j .  In our units h = m = 1. For the Casimir invariant 
cSO('r3)  + I = J? - ~2 + 1 we get 

(22) 

Proceeding from this specific realization of the SO(1,3) Casimiu operator we 
have found two different algebraic inversion schemes leading to two distinct classes 
of potentials. 

The first inversion scheme starts from the obsenation that in the realization of 
(22) the momentum operator P appears in fourth order, whereas the position opera- 
tor R appears only up to second order. As we want to get a Schrddinger equation in 
the end, where the momentum appears only up  to second order, we make a canonical 
transformation 

A canonical transformation does not change the commutation relations of the trans- 
formed SO( 1,3) operators. With the substitutions 

we obtain for the Casmimir operator (22) 

Following a procedure which is described in detail in (141 we make two further 
transformations which lead to the Schrodinger equation in the end: 

(i) a similarity transformation of the operators with T = T( R )  

c s O ( L 3 )  - T - ~ c S O ( W T  

(ii) a transformation of the coordinate R T = g( R ) .  
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The latter transformation connects the representation coordinate R with the phys- 

Introducing the wavenumber k = 
ical radial coordinate T. 

and choosing 

(24) 
21171 

T = g( R) = - coth-'R k 

and 

T(T) = rsinh2 (*) tanh (G) 
21171 

we obtain 

This realization of the Casimir operator cannot be used directly in the expression (10) 
for the Hamiltonian because the Casimir invariant appears in the denominator. We 
first have to multiply both sides of (10) from the left by -(Cso(',3)+l)/.rlz and obtain 

Then we substitute H by its eigenvalue E and vice versa. The last manipulation is 
allowed, since in the AST the operators always act on states of k e d  energy E. Thus 
we get 

which is equal to the expression (11). 
Using (26) and E = k2/2 we finally obtain 

Equation (27) has the form of a three-dimensional Schriidinger equation which sep- 
arates in spherical coordinates. We have 

where 

The potential V ( T )  is of Poschl-Wler type and depends on the energy E and the 
angular momentum 1. It is finite at the origin and goes like l/r2 for large values of 
the radial coordinate 7. 
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The corresponding S-matrix can be calculated analytically by means of traditional 
scattering theory: 

We observe that it belongs to the class S;of algebraic SO(1,3) S-matrices (f = lql, 
cf (3)). In the chosen realization the algebraically undetermined phase factors assume 
definite values: 

x - = n  and G,(k)=n-2argr( l - i1q1) .  

So far the inversion has been restricted to the choice f = q or f = 171 in the 
algebraic S-matrix, i.e. to an algebraic Hamiltonian of the form (10). In the general 
case the Hamiltonian reads 

Writing f instead of 1’11 in the transformations (24) and (25) and following the steps 
(26) to (28) one obtains the potential 

In the second inversion scheme we start with the realization (22) of the SO(1,3) 
Casimir invariant. We found that (22) can be written in the form 

The Casimir invariant is a constant in the irreducible representation space of 
scattering states with fixed scattering energy E. From (10) or (11) we get 

(33) c s O ( L 3 )  t 1 = -$, 

Comparing the right-hand sides of (32) and (33) we get a solution of the form 

Multiplying both sides by m / R  from the left and substituting E by X we obtain 

Thus, in the second inversion scheme the representation coordinate R = IRI is 
identical with the physical radial coordinate and one obtains the Coulomb potential 
as one possible solution. Clearly, the S-matrix corresponding to the Hamiltonian 
(35) belongs to the class S: of algebraic SO( 1,3) S-matrices (for q > 0). 

Another solution of (32) and (33) is given for 
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In this case one obviously gets a Coulomb potential which is attractive for 
Z,Zzez > 0. This amounts to a sign convention for 11 opposite to the one adopted 
in section 1. Consequently, the corresponding S-matrix belongs to the class S; (for 

For f = q+ f, modified Coulomb scattering should be described in the SO(1,3)- 
11 > 0). 

AST. In this case one has to solve (32) and 

CSO(’93) + 1 = - f Z  = -(q + f ,)2.  

By the same arguments as above we get 

instead of (35). It turns out that a constant parameter f leads only to a modified 
Coulomb potential and not to a short-range interaction. However, if one chooses an 
I-dependent parametrization for f ,  as e.g. in (12). it should be possible to simulate 
a short-range interaction. 

In summary, in the SO( 1,3)-mT two classes of potentials can be described, those 
of Poschl-Teller type and-as expected-those of Coulomb typa Other realizations 
or different inversion schemes might yield further potentials. 

4. Solutions of the 50(2,3) inverse problem 

The simplest approach to the derivation of potentials in the S0(2,3)-ASTgoes along 
the same lines as in the S0(1 ,3 ) -~sT .  First we have to look for realizations of the 
generators of the S 0 ( 2 , 3 )  algebra in appropriate coordinates, then we try to employ 
the same two inversion schemes as in the preceding section. It is easy to see that 
neither of the two inversion schemes can be applied when P and l2 appear in more 
than fourth order in the realization of the Casimir invariant. 

We found an appropriate realization of the S 0 ( 2 , 3 )  operators, which is con- 
structed from an S 0 ( 2 , 3 )  realization similar to the realization given in (21). Intro- 
ducing additional non-commuting operators U], uz, and u3 we consider the following 
representation: 

-P 
B = U2 --P(R-P)+ R - --P - { . , , U 3 }  2 ( 3i 2 ) (37) 

L = R x - P  v = u3 

where 

[u1,u2] = 0 [u l ,u3 ]  = -iu, [u,,ug] = ivl 

Here { , ) denotes the anticommutator, i.e. (a, b )  = ab + ba. One can think of 
U,, u ~ ,  and u3 as operators connected with an additional coordinate x related to the 
operator V. For instance, one may set u3 = -ia/dx, u1 = cosx and 2rz = sinx 
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in (37). Of course, one has to require that the Casimir invariant Cs0(z13) depend 
only on v3 = V. We get 

A Zielke and W Scheid 

CS0(2J) t = - - P ( R P ) + R -  --'p + ( R x P ) Z +  1- (d 3 - 4  ' ) ( p ' - l ) .  
g (  3i s 2 

(38) 

In order to employ the first inversion scheme one has to introduce a transformation 
so that the momentum appears only quadratic in the realization of Cs0(2,3). This 
can be achieved by making the canonical transformation in (38): 

U + - P  P 4  R .  

Writing now all o erators in configuration space we obtain a coordinate repre- 
sentation for Cs0~2~3)+ z, which after a similarity transformation with T ( R )  = 
exp(-4i?rRa/BR) takes the form 

Here, the operator v3 = V has been substituted by its eigenvalue U. The transforma- 
tion with T(R) belongs to the class of scaling transformations T = e-iaRF, P = 
-ia/m, which introduce a rescaling of R and P: R + e"R, P - e - V .  As 
outlined in section 3 one continues by connecting the realization coordinate R with 
the physical radial coordinate T 

(40) 
1171 r = g ( R )  = - artanhR 
k 

followed by a second similarity transformation with 

Both transformations, (40) and (41), are chosen in such a way that the transformed 
50(2,3) Casimir operator has the form of a Schrodinger Hamiltonian. We get 

kZ yz - ?. 
4 - -  kz az 2 a k= L2 - - ( c s w . 3 )  + 9 )  - __ - __  - 

v2 - as vz sinhz(rk/lql) 17' coshz(rk/lql) ' 
(42) 

The realization of the algebraic Hamiltonian is given by (cf (19)) 
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where 

We observe that the first, Idependent term of the potential (44) is identical with 
the potential (28) derived in the S0(1,3)-AST. The second term contributes only for 
u2 # $. A variation of the free parameter v allows alterations to the shape of the 
potential. For this reason v is called potential strength parameter in the AST [5,8,9]. 

It is surprising to note that the potential (44) is the same one we derived in an 
earlier paper [14] from a different realization of the S 0 ( 2 , 3 )  generators (cf equa- 
tions (6)-(19) of [14]). We found yet another suitable realization of the S0(2 ,3)  
generators: 

(45) 
P 

B = ( e 2 &  i u l )  ( E  ~2 + u 7 ~  - 7 i v , R -  ({vl,v3} i{vz,u3))z 2 
L = R x P  v = v3 

for which the first inversion scheme yields again the potential (44). The parameter U 

may be chosen arbitrarily. The S-matrix corresponding to the potential (44) can be 
calculated analytically in the framework of traditional scattering theory: 

(46) 

It belongs to the class S;of algebraic S-matrices (f = 1111, cf (1)) , where the 
algebraically undetermined phase factors take the values 

x- = A  and ~ - ( k ) = n - 2 ( a r g r ( l - i l ~ l ) + 1 ~ t l n 2 )  

The second inversion scheme cannot be applied directly to the realization (38) of 
the S 0 ( 2 , 3 )  Casimir invariant. As shown in section 3 we know how to solve the 
inverse problem for Hs0(',3) = -92E/(CS0('x3) + 1) with the Casimir invariant 
given by (32). The solution makes use of the particular form of the realization of 
the S0(1 ,3)  Casimir invariant. Now we want to solve the S0(2 ,3)  inverse problem 
where 

and 

CSO(293) + - = - --P(R-P) + 7E - --P + ( a x  P)2+ 1 - v2- - (F2-  1) .  

(47) 
4 g (  3i 2 > z  ( :> 

Furthermore, we would like to show that it is possible to obtain a pure Coulomb 
potential for v = f .  Therefore, we look for a set of transformations which converts 
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the particular realization of (47) with vz = into the form of the realization of (32). 
Beforehand, it is not clear that such a set of transformations exists. We could not find 
any R-dependent transformations in configuration space leading to the desired result. 
Instead, one has to consider ?-dependent transformatiom in momentum space. Mak- 
ing a scaling transformation with T = exp( i(ln2E) RP) in (32) and substituting R 
by iV, and RZ by 

A Zielke and W Scheid 

in (32) and in (47), one obtains the following expressions: 

99 25 
4 2 

+ -7J2 - - - (; - d) ( l -  PZ) . (49) 

Now the right-hand side of (49) can be transformed to the form of the right-hand 
side of (48) by means of the following ?-dependent transformations: 

(i) a similarity transformation with 

(ii) a transformation of the momentum coordinate 

(iii) a similarity transformation with 

T = T(P) = ( P  - 1 ) Z .  (52) 

It turns out that P is the physical momentum scaled by a factor of l/m. 

variant 
Applying the transformations (i)-(iii) one obtains for the S 0 ( 2 , 3 )  Casimir in- 

Z 
+ 3P2 - 2 + ( d  - i) (S) (53) 
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After a further scaling transformation with I = exp ( -  fi(ln2E) R P )  and the iden- 
tification of P with the physical momentum, the S0(2 ,3)  Casimir operator (53) 
reads in abstract Hilbert space 

Thus, we have found a realization of CS0(’r3) + i ,  which for v = 4 assumes the 
same form as the realization (32) of the S0(1 ,3)  term Cs0(133) + 1. For v = 4 
one can apply the second inversion scheme to the realization (54) and obtains the 
Coulomb potential as in section 3 

For v # f it is possible to derive an operator expression for the potential V. We 
first make the ansatz 

where U is a yet undetermined operator. Then we substitute the term (E - P2/2) 
acting on the scattering states by V. This allows us to write 

[ & ($ - E)]’ = 7’ + (7 + % ( E  - $)) EO. (57) 

Using (15) with f = 7 we determine the operator U by comparing (57) with (54). 
We finally obtain 

V = V ( R , P ) = -  U - -  R 

( :‘))-I( E -  PZ/2)’ 
x ( Z 1 z 2 e Z + ~  E--  

E +  P2/2 ‘ 

For v # the potential (58) becomes non-local. The non-locality is introduced 
through a complicated momentum- and position-dependent operator which is not 
easy to handle. Work on an interpretation of the non-local part as well as on an 
analytical calculation of the S-matrix in the framework of the traditional scattering 
theory is in progress. 

The occurrence of non-local potentials, which has also been conjectured by Al- 
hassid (cf p 472 of [9]), is in agreement with the conclusions drawn from a nu- 
merical inversion of the phase shifts calculated from a given parametrization of the 
S0(2 ,3)  S-matrix [13]. There, the energy dependence and rapid oscillations of 
the numerically determined local potential pointed to an underlying non-local in- 
teraction. This assumption was corroborated in a subsequent paper [21] where the 
local, energydependent potential found in [I31 was connected to a smooth, local and 
energy-independent potential plus a non-local interaction. 
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5. Summary and Conclusions 
In the AST with S0(1,3) or SO(2,3) dynamical symmetry the respective general 
S-matrices contain the Coulomb S-matrix as a special case. For both groups the 
general algebraic S-matrix encompasses two classes of S-matrices with different pole 
structures. However, in the algebraic theory the potentials corresponding to these 
S-matrices are not known. 

In this paper two different inversion schemes have been presented, which provide 
the connection of the algebraic S-matrix with underlying potentials. Corresponding 
to the two inversion schemes one gets two different types of potentials, each type re- 
producing an S-matrix belonging to one class of algebraic S-matrices. The potentials 
are of Pbschl-Rller type for the first and of Coulomb type for the second inversion 
scheme. 

The S0(1,3) inverse problem turns out to be a special case of the S0(2,3) 
inverse problem and can be solved completely. In the case of the SO(2,3) group 
structure the second inversion scheme yields a pure Coulomb potential for the value 
2) = $ of the potential strength parameter. For 2) # $ an additional momentum- 
dependent term comes into play which corresponds to a non-local potential and 
necessitates further investigations. 

The most important result of this paper is that we have found for the first time a 
procedure to relate the algebraic SO(1,3) and S0(2,3) S-matrices with Coulomb 
potentials via an appropriate realization of the group-theoretical Hamiltonian. This 
proves that cross sections, calculated by using the algebraic SO(1,3) and S0(2,3) 
S-matrices with parameters fitted to experimentally measured cross sections, bear 
a physical meaning in the sense that they can bc traced back to the scattering of 
particles in a Coulomb potential modified by a non-local interaction. 
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